The X-Ray diffraction and the discovery of the structure of DNA

By Gaia Marana

Index:

- What are the X-Rays
- How does the X-Ray diffraction works
- The discovery of the structure of DNA
- Modern application of X-Rays
 - Medicine
 - Security

What are the X-Rays

X-rays are types of electromagnetic radiation, mostly known for their ability to see through people's skin.

X-Rays are roughly classified into soft X-rays and hard X-rays. The first one have relatively short wavelengths of about 10 nanometers; while the second one have wavelengths of about 100 picometers.

These electromagnetic waves occupy the same region of the EM spectrum as gamma-rays.
The only difference between them is their source: X-rays are produced by accelerating electrons, whereas gamma-rays are produced by atomic nuclei, in one of four nuclear reactions.

X-rays have a similar nature to visible light rays, but have a much shorter wavelength.

How does the X-Ray diffraction works:

The X-Ray diffraction or X-Ray crystallography is a scientific method for the determination of the precise positions of atoms in a lattice where beams of X-ray strikes a crystal and causes the beam of light to diffract into many specific directions. This particular phenomenon was discover by Wilhelm Röntgen in 1895.

•After the discovery of the diffraction of X-rays by crystals, in 1**912 William H. Bragg** and his son, **William L.**, derived the **Bragg's law**, which relates the wavelength of X rays to the glancing angle of reflection.

nλ=2d ·sinθ

n= integer determined by the order given;

 λ = wavelength of x-rays;

d= space between the planes in the atomic lattice;

θ=angle between the incident ray and the scattering planes.

The discovery of the structure of DNA

The most famous use of the X-Ray crystallography was for the study of the structure of DNA which unlocked the door to understanding many aspects of DNA's function.

The X-Ray diffraction was used firstly for the study of myoglobin and then it was a woman called Rosalind Franklin and Raymond Gosling to use this method for the determination of DNA's structure. With the help of Maurice Wilkins (who prepare DNA samples in a perfect)

parallel regularity), Rosalind managed to take the picture who helped J.Watson and F.Crick. to understand the structure of DNA and, sequently, won the Nobel Prize in Medicine in 1962.

Modern application of X-Rays:

- **MEDICINE**: X rays are widely used for diagnostic purposes like the observation of the broken bones and torn ligaments moreover lately researcher started to study x-ray to understand if there is the possibility to kill tumoral and cancer cells.
- **SECURITY:** The science of X-rays in security systems makes possible to see into the passengers' luggage, and ascertain the presence of dangerous or forbidden objects.

Sitography:

- <u>https://www.livescience.com/32344-what-are-x-rays.html</u>
- https://www.leeds.ac.uk/heritage/Astbury/X_ray_diffraction/index.html
- https://www.youtube.com/watch?v=DFFU39A3fPY
- http://scarc.library.oregonstate.edu/coll/pauling/dna/pictures/sci9.001.5-large.html
- http://www.chem.ucla.edu/~harding/ec_tutorials/tutorial73.pdf
- <u>https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Materials_Science)/</u> <u>Electronic_Properties/X-ray_diffraction%2C_Bragg's_law_and_Laue_equation</u>
- https://www.khanacademy.org/science/high-school-biology/hs-molecular-genetics/hs-discovery-andstructure-of-dna/a/discovery-of-the-structure-of-dna
- <u>http://ebook.scuola.zanichelli.it/sadavabiologia/section-4/il-contributo-di-franklin-e-wilkins-fu-decisivo-per-la-scoperta-della-struttura-del-dna</u>
- https://www.gilardoni.it/en/security/x-ray-solutions/
- http://science.jrank.org/pages/7433/X-Rays-Applications-x-rays.html
- https://ntbxray.com/application/application.html
- FISICA Modelli teorici e problem solving 2, James S. Walker, Linx, Pearson